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FOREWORD

This report presents the results of experiments designed to investi-
gate the relationship between animal tolerance to air blast and the ambient
pressure existing at time of exposure. The tolerance of rats, guinea pigs,
dogs, and goats exposed in shock tubes to reflected pressures with dura-
tions of 16 to 35 msec at experimental ambient pressures ranging from
5 to 42 psia was explored. The results indicated the effects of ambient
pressure on mammalian response to ''sharp''-rising overpressures of
"long " duration were quite significant; viz,, lethal overpressure varied
by factors of 4 to 5.

The findings may be applied to problems involving the scaling of bio-
logical blast effects to differences in altitude or potential blast exposure
in pressurized or evacuated locations. They are also of significance in
the evacuation of blast-produced casualties by air or other methods in-
volving ambient pressure changes.

This study is part of a broad program, the aims of which are the
accurate prediction of human tolerance to air blast and the development
of appropriate procedures for the diagnosis, prognosis, and treatment of
blast injuries,




ABSTRACT

Seventy-six dogs, 43 goats, 211 rats, and 255 guinea pigs were ex-
posed to reflected shock pressures at ambient pressures ranging from 5
to 42 psia in air-driven shock tubes. Animal tolerance, expressed as
LDsgp-one-hour overpressures rose progressively as the ambient pres-
sure was increased.

By analysis of the results of this study, combined with those from
previous shock-tube investigations, a general equation for the regression
of LD5Q pressure on ambient pressure for mammals was derived. From
this equation and previous estimates of the LD5(Q pressure for man's tol-
erance to overpressures of 400-msec duration at an ambient pressure of
12 psia, an equation relating LDg( pressure to ambient pressure was
developed for the 70-kg mammal.
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THE EFFECTS OF AMBIENT PRESSURE ON TOLERANCE
OF MAMMALS TO AIR BLAST

Edward G. Damon, Charles S. Gaylord, William Hicks,
John T. Yelverton, Donald R. Richmond, and Clayton S. White

INTRODUCTION

Investigations have established that injuries from exposure to air
blast occur_ more often in air-containing organs than in other regions of
the body. 1-11" A5 the lungs are very delicate air-containing structures
and are more susceptible to blast injury than other vital organs, most of
the causes of death from primary-blast effects, such as coronary and
cerebral air embolism and pulmonary insufficiency may be traced di-
rectly or indirectly to pulmonary injuries.

A proposed biophysical mechanism of air-blast injury, which has
gained increasing consideration in recent years, is that injury results
from implosion of tissue and fluids into gas - containing organs as an
effect of violent compression of the body by the positive phase of a blast
wave. 11,12 This concept suggests a direct relationship between the ex-
tent of lung injury and the change in volume which lungs undergo when
subjected to a blast load. Furthermore, the degree of change in lung
volume, in relation to the magnitude of the blast overpressure, would be
affected by the ambient pressure existing in the lungs at the time of blast
exposure. 13

Experiments involving exposure of mice to air blasts at different at-
mospheric pressures have verified that ambient pressure does affect
animal tolerance to air blast., 14,15 Therefore, studies were extended to
include other mammalian species in order to devise methods of defining
the effects of ambient pressure on human tolerance to air blast.

This report presents the results of experiments in which rats, guin-
ea pigs, goats, and dogs were exposed at different ambient pressures to
long-duration reflected pressures in shock tubes.

MATERIALS AND METHODS

General

The effects of ambient pressure on animal tolerance to air blast were
explored by exposing rats, guinea pigs, dogs, and goats to shock waves at
altered ambient pressures in shock tubes. Previous studies have shown
that compression or decompression of animals soon after blast exposure
significantly affected the lethality.l4 Therefore, in this study, all ani-
mals were held at the experimental ambient pressure (Pj) for one hour
following blast exposure before returning them to the ambient pressure
level (Pg) of the laboratory. Lethality was assessed during this one-
hour-hold period.




Shock Tubes
12-Inch Diameter Shock Tube

The 12-inch diameter shock tube used for exposing rats and guinea
pigs has been described in a previous report. 16 For the present study,
the endplate of the tube was fitted with a transparent window for observ-
ation of the animals during the post-shot, one-hour-hold period. Each
animal was exposed to a reflected shock wave in a wire - mesh cage
mounted inside the shock tube against the endplate. Procedural details
for conducting these exposures have been reported. 14,15

24-40-Inch Diameter Shock Tube

The shock-tube arrangement in which dogs and goats were exposed
is shown in Figure 1. The tube consisted of a compression chamber 24
in. in diameter and 3 ft long, and an expansion chamber 43 ft 10 in. in
length constructed of three sections: (1) a 20-ft length of 24-in. diameter
pipe connected to the compression chamber; (2) a transition section 46
in. in length which increased the diameter of the tube from 24 to 40.5 in.;
and (3) a test section having a diameter of 40.5 in. and a length of 20 ft.
A storage-tank reservoir, connected to the expansion chamber, was used
to hold the desired pre-shot pressure level in the expansion chamber by
adding to or reducing pressure as required.

A diaphragm, consisting of sheets of Du Pont Mylar® plastic, sep-
arated the compression and expansion chambers. Each sheet of Mylar
(0. 01 in. thick) had a bursting pressure of approximately 20 psi in this
tube. The compression-chamber pressure, necessary to produce the
desired reflected overpressure dose, was achieved by using an appro-
priate number of plastic sheets. :

The dogs and goats were mounted against the endplate closing the
test section, right-side-on to the incident shock with a restraining har-
ness constructed of 1-in. nylon webbing. Electrocardiograph (ECG)leads
were attached to the animals and passed through a hole in the endplate to
a Sanborn Twin-Beam ECG. The ECG output was monitored visually on a
cathode-ray oscilloscope to determine the time of death of each animal.

Pressure-Time Measurements

Three piezoelectric pressure transducers were used on each test —
two to measure the peak reflected pressures and one to record the pre-
shot and post - shot, pressure-time events. Details of pressure—%au%e
recording and calibrating systems have been previously reported. 6-18

For measuring peak reflected pressures, two pressure gauges con-
taining sensors of lead metaniobate (Model ST-2, Susquehanna Instru-
ments, Bel Air, Md.) were mounted flush with the inside wall of the tube
3 in. upstream from the endplate. This arrangement placed the gauges
directly above the back of the animal. The mean of the peak reflected
pressures recorded by the two gauges was taken as the overpressure dose
for a given test. A typical pressure-time waveform recorded by one of
these gauges is shown in Figure 2.

Pre-shot and post-shot, pressure-time events were recorded with a
quartz piezoelectric pressure transducer (Model PZ-14, Kistler Instru-
ment Corp., N. Tonawanda, N. Y.) mounted in the wall of the tube 9 in.

2
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upstream from the endplate. The signal from this gauge was passed via
a Kistler Amplifier - Calibrator into a cathode - ray oscilloscope. The
sweep on the oscilloscope was set at 5 sec/cm and manually triggered to
record the following:

(1) pressure change from Pg to Py,

(2) decompression from the immediate post-shot, static
pressure level (Pp) to Pj, and

(3) decompression from Pj to Pg. This step was per-
formed after the animal was dead (as determined by
the ECG) or, in the case of survivors, one hour
following the shot.

Pre-shot and post-shot pressurization and decompression times were
also measured with a stopwatch.

Pressure-Time Sequences

The sequences of pressure-time events to which the animals were
exposed in each experiment are illustrated in Figures 3 a-d. Presented
in these figures are the mean times and pressures for the tests conducted
at experimental ambient pressures of 7, 12, 15, and 18 psia.

Referring to Figure 3d, the mean rise-time (the change in pressure
from P, to Pj; i.e., t]) was 7 seconds. The time at Pj pre-shot (t2) was
443 seconds. With the arrival of the shock wave, the pressure rose near-
instantaneously to the reflected shock level (AP ). The positive-phase
duration of the initial reflected wave was 36 msec (t3). Following the
shot, the pressure became stabilized in the tube at 30 psia, Pp. It was

retained at this level for 17 seconds (t4) before it could be returned to
P; in 6 seconds (t5). The animals were then retained at this pressure

level for one hour (t¢), after which they were decompressed to Pgo in 7
seconds (t7).

Experimental Animals

The number, type, and body-weight data for animals exposed in this
study are given in Table 1. Both sexes were used in all groups.

In order to check for possible effects of the pre-shot and post-shot
pressure changes to which the animals were subjected, controls were ex-
posed to the most rigorous combinations of increase, hold, and release
of pressure (minus the blast) experienced by the test animals. No effects
from these pressure changes were detected in the control animals.

Fatalities were autopsied soon after death; survivors were sacrificed
on the day following exposure.

Analysis of the Data

The reflected pressures required to produce 50 -per cent lethality
(LD5g) for each experiment were determined by probit analysis of the
one-hour-lethality data. 19 Statistical analyses indicated no significant
differences in the slopes of the probit regressions for the various tests
at the 95-per cent confidence level. As a result of these analyses, a set
of parallel probit regressions for each species was fitted to the data for
all of the experiments. LD5(Q pressures and their 95-per cent fiducials
were obtained from these parallel regressions.
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TABLE 1
ANIMALS EXPOSED TO AIR BLAST AT DIFFERENT AMBIENT PRESSURES

Experimental Number Body Weight, grams
Ambient Pressure, of Standard
Species psia Animals Mean & Range Deviation
201.1
Rats 7.0 28 (170-227) +12.6
(Sprague Dawley) 188. 6
12,0 40 (162-235) * 15,6
174.9
14.7 27 (157-230) +16.8
192.1
18.0 76 (170-219) %13.3
195.2
42,0 40 (160-271) + 22,4
191.0
Total 211 (157-271) +17.6
515.5
Guinea Pigs 5.0 43 (400-895) +144, 4
(English Breed) 589. 1
7.0 76 (403-892) *158. 6
421, 6
12,0 38 (400-471) + 20.1
431.5
18.5 53 (397-499) + 25,6
433. 4
40.0 45 (400-500) + 29,4
491.5
Total 255 . (397-892) %127, 5
18.7 kg
Dogs 7.0 31 (15-24.7) * 2.7
(Mongrel) 17.5
12.0 15 (10.2-25) x 4,8
17.1
18.0 30 (11.4-27,3) + 3,5
17.8
Total 76 (10.2-27, 3) £ 3.5
21,7 kg
Goats 7.0 29 (15-32. 3) £ 5.8
(Mixed Breed) 31.2
15.0 14 (14.5-41.8) x11.1
24.8
Total 43 (14.5-41.8) + 9,1
Total 585




RESULTS

Pathological Findings

The types of lesions sustained by the animals exposed to air blast at
different ambient pressures were not different from those generally re-
ported in the literature on Blast Biology. The major types of injuries
exhibited were lung hemorrhage, arterial air embolism, hemothorax,
pneumothorax, hemorrhage of the spleen, kidneys, liver, walls of the
gastrointestinal tract, intercostal regions, and sinuses, and rupture of
the eardrums, sometimes with disruption of the auditory ossicles.

Results of the Probit and Regression Analyses

Results of the probit analysis are summarized in Table 2, Presented
are the probit equation constants, LD5(Q pressures, and ambient pressures
for each experiment. The results indicate that for each species the LD5Q
pressures rose with increasing ambient pressure. Parallel dose-response
curves fitted to the data are presented in Figures 4-7.

All tolerance values obtained to date for the five species of animals
used in ambient-pressure studies are presented in Table 3. Regressions
of the form, log y = a + b log x (where y = the LD5g pressure in psig, a =
the intercept constant, b = the regression coefficient, and x = the experi-
mental ambient pressure in psia), were obtained for each species from
these data. Because the slopes of these regressions were not significantly
different at the 95-per cent confidence level, a set of regressions having
common slopes was fitted to the data. These curves and their equations
are shown in Figure 8.

DISCUSSION

Effects of Ambient-Pressure Changes
on Animal Tolerance to Air Blast

The results of this study, which indicate that five species of mam-
mals exhibit uniformly increasing tolerance to air blast with increasing
ambient pressure, aredirectlyapplicable to animal response to ''sharp'-
rising reflected pressures of "long" duration. The data apply only indi-
rectly to situations involving animal exposure to non-ideal waveforms or
blast waveforms having positive-phase durations shorter than 1-2 msec
for mice, 2-3 msec for guinea pigs and rats, and about 15 msec for dogs
and goats. 20, 21

Results obtained here were comparable to those reported by Kolder
and Wohlzogen involving explosive compression of rats from initial pres-
sures of 1-3 atmospheres to final pressures of 2-12 atmospheres, with
rise time to final pressure near 1 msec, and animals returned to normal
atmospheric pressure in approximately 3 seconds after the test(l atmos-
phere = 14.7 psia).22 LDg( values for initial pressures of 1, 2, and 3
atmospheres computed from probit regression equations were 34.5, 69.0,
and 100.4 psig, respectively. These values compare favorably with rat
LDso pressures of 38.8, 68.8, and 96. 3 psig for initial pressures of 1,
2, and 3 atmospheres, respectively, in the present study.




TABLE 2
RESULTS OF PROBIT ANALYSIS

Experimental Number LDgg One-Hour Probit
Ambient Pressure, of Reflected Pressure, Equation Constants

Species Py (psia) Animals AP (psig) intercept, a  slope, b
22,0

Rats 7.0 28 (20. 3-23. 8) ~14, 880 14. 810
30.8

Rats 12,0 40 (28.8-32,9) -17.037 14. 810
41.5

Rats 14.7 27 (38.2-45,0) -18.955 14. 810
46.1

Rats 18.0 76 (43.8-48.5) -19. 641 14,810
. 95. 4

Rats - 42,0 40 (89. 5-101. 6) -24,313 14. 810
13.6

Guinea Pigs 5.0 43 (12, 6-14.6) -11.774 14. 810
20.4

Guinea Pigs 7.0 76 (19.4-21.4) ~14.397 14. 810
34. 6

Guinea Pigs 12,0 38 (32.3-37,1) -17.796 14. 810
54,1

Guinea Pigs 18,5 53 (50.7-57.8) -20. 663 14. 810
104. 2

Guinea Pigs 40.0 45 (97.9-110. 8) -24, 884 14. 810
31.3

Dogs 7.0 31 (29.1-33.9) -17.154 14. 810
53.7

Dogs 12.0 15 (48.5-59, 4) -20. 616 14. 810
70. 4

Dogs 18.0 30 (65.3-76. 2) -22, 361 14.810
25,2

Goats 7.0 29 (23.4-27,2) -15.761 14.810
56.9

Goats 15.0 14 (51.1-63.2) -20.988 14.810

10
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REGRESSION EQUATIONS:
MOUSE Logy = 0.599 + 0.828 log x
RAT Logy = 0.622 + 0.828 log x
GUINEA PIG Logy = 0.650 + 0.828 log x
DOG Logy = 0.812 + 0.828 log x
GOAT Logy = 0.789 + 0.828 log x
Where y = LD50 PRESSURE, psig
x = EXPERIMENTAL AMBIENT
PRESSURE, (Pi)’ psia
Figure 8. Effects of Ambient Pressure on Mammalian

Tolerance to '"Long'' -Duration Overpressures.

16



The animal exposures in these experiments differed from the true
blast situation in the open in that the pressure in the shock tube, after
each shot, momentarily stabilized (11-17 seconds) at a static level above
that of the pre-shot ambient pressure before it could be reduced to the
experimental ambient-pressure level. This difference, however, was
probably of little biological significance because the LDg( values obtained
.in the studies for guinea pigs and dogs at the normal ambient pressure
(12 psia) were in good agreement with those previously obtained from
animal-blast exposures free of such aberrations; for example, the 34, 6~
and 53. 7-psig values for guinea pigs and dogs, respectively, in the pres-
ent study, as compared with 34.5 and 52. 9 psig for these species exposed
in a shock tube with open vents at 12 psia to overpressures of near 400-
msec duration. 17,23 Additional similar comparisons suggest that it was
the initial '""sharp' rise in pressure and the durationof the positive phase of
the blast wave that were significant in causing lethal blast injuries, and
not the immediate post-shot pressure events to which these animals were
subjected. Because lethality was assessed during the one-hour, post-
shot period in which survivors were held at the experimental ambient-
pressure level before returning them to the normal atmospheric pressure
level, the mortality data can be considered free of any bias due to this
last pressure change.

The partial pressure of oxygen (P(Q;) in the ambient air during the
post - shot, one-hour-hold period was dependent upon the experimental
ambient pressure (Pj). Control experiments indicated that animals not
subjected to blast injury tolerated the lowest and highest pressures (with
their attendant P@j, values) for the times involved in the experiments
without detectable effects. Possible effects of differences in the Pg, on
one-hour survival of blast-injured animals in experiments of this type
have not yet been investigated.

Estimates for the 70-Kg Mammal

As the curves presented in Figure 8 have common slopes, their re-
gression coefficient was used in deriving the following general equation
for mammals:

logy =

a + 0.828 log x
where: vy
a

the LDg( pressure in psig
the intercept constant for a particular species
the ambient pressure at exposure in psia

(LI | I |

X

An equation for the 70-kg mammal was then derived from this gen-
eral equation. The estimated LDggp pressure of 52 psi at an ambient
pressure of 12 psia, as previously reported, 20 for the 70-kg mammal
was used in order to obtain the intercept constant for the regression. The
resultant curve and its equation, presented in Figure 9, may tentatively
be used for estimating human tolerance to '"sharp'-rising overpressures
of '"long'" duration at different ambient pressures. It should be noted that
all data on which the regression is based were obtained from blast expo-
sure of animals against reflecting surfaces.
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Predicted Effects of Ambient Pressure on Tolerance of the
70-Kg Mammal to "Long'' -Duration Overpressure.
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Pressure Ratio

The data in Table 3 indicate that the ratio of the LDgg reflected pres-
sure (AP) to the experimental ambient pressure (P;) generally decreased
with increasing ambient pressure. This trend was clearly indicated by
the mouse and rat data, but was less evident from the data for the other
three species.

The fact that the LD5p-AP/P; pressure ratio did not tend to remain
constant with changes in P; was indicatedin 10 of 16 experiments at altered
ambient pressures wherethe LDgg- AP/P; ratio was outside the 95-per cent
confidence limits of this ratio for the given species at normal ambient
pressure (12 psia). As the majority of these data do not indicate that the
LDgs(o pressure ratio is a constant for each species, the curves and re-
gression equations'presented in Figures 8 and 9 should be used for scaling
LDs0 pressures to. differences in ambient pressure instead of using the
normal LDgg-pressure ratio as a factor for biological blast scaling as
tentatively suggested in an earlier work. 14

Practical Implications

The results of these studies have significant implications in assessing
hazards from blast exposures in pressurized or evacuated spaces, such
as caisson tunneling and mining operations, cabins of aircraft aloft, space
capsules, and perhaps underwater for certain conditions of exposure. For
example, if a given biological response, such as 50-per cent lethality,
results from exposuresto ''long'-duration blast waves with peak pressures
near 60 psi at a sea-level surface, then where an ambient air pressure of
3 atmospheres exists, peak pressures of slightly more than 150 psi would
be required to produce the same effect; e. g., underwater tunneling has been
carried out above and below the ambient pressures noted here and explosions
in such locations, all other factors being comparable, would be less haz-
ardous than at sea level.

-

The meaning of the present study as far as underwater blast is con-
cerned is more difficult to assess for a number of reasons. Among them
are complicating events suchas the depth of the water and explosive charge;
the location of the target with respect to the water surface and the bottom;
positive reflections from the latter, the magnitude of which — among other
things — is a function of the nature of the bottom; and negative reflections
from the surface, which critically influence the duration of the overpres-
sure, the pulse being very short for near-surface locations and progres-
sively longer with increasing depth. Also, there is the fact that the dura-
tions of blast overpressures in water are generally much shorter than in
air. Too, there are no doubt differences in the efficiency with which en-
ergy is imparted to a biological target by blast waves in air on the one
hand and in water on the other. Such factors make it clear that a straight-
forward increase in blast tolerance may or may not occur for exposures
atincreasing depths underwater. Without question, the matter is complex
and is hardly within the scope of the experiments reported and discussed
here.

Implicit in the present study, but documented elsewhere6,10,14,15 js
the fact that post-exposure pressure changes have important effects on

19




chances of survival of those injured by blast. As movementand evacuation
of blast casualties may entail subjecting them to changing ambient pres-
sures, those who treat blast casualties should know and remember that
decompressionis veryhazardous toblast patients, particularlyif it occurs
soon after injury suchas during early air evacuation. In contrast, imme-
diate or early compression has reduced mortality significantly in experi-
mental animals and no doubt would be effective in man; viz., blast injury
occurring in flight in aircraft would subsequently be benefitted by flying at
the lowest practical altitude.

Finally, though the results of the present study clearly indicate am-
bient pressure is a physical parameter of major importance in specifying
blast effects, investigations to date have been limited to assessing animal
response to ''sharp''-rising overpressures of '"long'" duration. Further
work will be required to demonstrate that ambient pressure variation is of
significance either for non-ideal waveforms or for blast overpressures
enduring for quite short periods of time.
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